Revision problems

1. The cubic polynomial $2 x^{3}+a x^{2}+b$ is denoted by $f(x)$. It is given that $(x+1)$ is a factor of $f(x)$, and that when $f(x)$ is divided by $(x+2)$ the remainder is -5 . Find the values of a and b.
2. The polynomial $x^{4}-6 x^{2}+x+a$ is denoted by $f(x)$.
(a) It is given that $(x+1)$ is a factor of $f(x)$. Find the value of a.
(b) When a has this value, verify that $(x-2)$ is also a factor of $f(x)$ and hence factorize $f(x)$ completely.
3. Solve the equation $|x-1|+|2 x+1|=x+4$.
4. Solve the following inequalities:
(a) $|x-4|>x+1$,
(b) $|2 x-1|<|3 x|$.
5. Expand $(1-3 x)^{-\frac{1}{3}}$ in ascending powers of x, up to and including the term in x^{3}, simplifying the coefficients.
6. Express $f(x)=\frac{4 x}{(3 x+1)(x+1)^{2}}$ in terms of partial fractions.
7. Express $f(x)=\frac{1}{(3 x+1)\left(2 x^{2}+x+1\right)}$ in terms of partial fractions. Hence expand $f(x)$ in ascending powers of x, up to and including the term in x^{3}, simplifying the coefficients.
8. Solve the following equations:
(a) $5^{x-2}=5^{x}-2$; giving your answer correct to 3 significant figures,
(b) $\ln \left(\mathrm{e}^{x}+1\right)=2 \ln \left(\mathrm{e}^{x}-1\right)$; giving your answer in an exact form.
9. The variable x and y satisfy the equation $y^{3}=A \mathrm{e}^{2 x}$, where A is a constant. The graph of $u=\ln y$ against x is a straight line.
(a) Find the gradient of this line.
(b) In the u - x diagram, given that this line intersects the u-axis at the point where $u=0.5$, find the value of A, correct to 2 decimal places.
10. (a) Prove the identity $\csc 2 x-\cot 2 x=\tan x$.
(b) Use this result to find the exact value of $\tan 15^{\circ}$, without using a calculator.
11. Express $3 \sin x-4 \cos x$ in the form $R \sin (x-\alpha)$, where $R>0$ and $0<\alpha<\frac{\pi}{2}$. Hence
(a) solve the equation $3 \sin x-4 \cos x=2$, giving all solutions between 0 and 2π;
(b) find the greatest and least values, as x varies, of the expression $\frac{1}{3 \sin x-4 \cos x+10}$.
12. Denote $\theta=\tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{9}\right)$.
(a) Use the addition formula of tangent twice to find $\tan \theta$.
(b) Thus find the exact value of θ.
